
Heaps and Data Structures:
A Challenge for Automated Provers

Sascha Böhme1 and Michał Moskal2

1 Technische Universität München, boehmes@in.tum.de
2 Microsoft Research Redmond, michal.moskal@microsoft.com

Abstract. Software verification is one of the most prominent application areas
for automatic reasoning systems, but their potential improvement is limited by
shortage of good benchmarks. Current benchmarks are usually large but shallow,
require decision procedures, or have soundness problems. In contrast, we pro-
pose a family of benchmarks in first-order logic with equality which is scalable,
relatively simple to understand, yet closely resembles difficult verification condi-
tions stemming from real-world C code. Based on this benchmark, we present a
detailed comparison of different heap encodings using a number of SMT solvers
and ATPs. Our results led to a performance gain of an order of magnitude for the
C code verifier VCC.

1 Introduction

Among the applications of automatic provers, software verification is one of the most
prominent and challenging driving forces [15]. Successful automatic code verifiers trig-
gered and influenced the development of previously unseen improvements in reasoning
systems. Yet, there is ample space for further advances, both in code verifiers and their
underlying reasoning systems.

In practice, the development of automatic provers is usually driven by benchmarks
(see [3,28] for large collections), taken from examples of existing applications. Current
benchmarks stemming from the program verification world, large in size as they may
be, are typically shallow (i.e., their solution touches only a small fraction of the search
space), sometimes have consistency problems in their axiomatizations, and in many
cases do not fall into the domain of an entire class of strong automatic provers. Shal-
lowness is due to the prevalent use of model checkers in program verification, whose
applications rarely cover deep problems. Inconsistencies in axiomatizations remain fre-
quently unnoticed, due to the “reliably” incomplete quantifier reasoning of the applied
provers (interestingly, the provers still correctly discover bugs in programs). Inappli-
cability of provers is caused by the lack of support for specific theories, especially for
integer arithmetic, which is frequently required by benchmarks. Thus, there is a demand
for new and complex benchmarks with the potential to initiate further improvements in
the world of automatic provers and code verifiers.

We consider two classes of automatic provers relevant for verifying complex code.
The first class is that of resolution-based provers such as E [27], SPASS [30] or Vam-
pire [26], which we will refer to as atomatic theorem provers (ATPs). They are powerful



in logical reasoning, but lack decision procedures for theories such as arithmetic. The
second class is formed by satisifiability modulo theories (SMT) solvers, e.g., CVC3 [4],
Yices [13] and Z3 [11]. They combine SAT solvers with decision procedures for various
theories (e.g., equality and linear arithmetic) and quantifier instantiation heuristics.

1.1 The Quest for Fast Automated Provers

Automatic code verifiers demand an interactive feedback-driven style of verifying code:
The user annotates the code and invokes the verifier, which, in turn, asks the automatic
back-end prover to check the verification condition (VC) corresponding to the annotated
code. In almost all cases, the initial annotation does not comply with the code and the
user has to modify either of them and run the verifier again. Only after typically several
repetitions of this feedback loop, the verifier will be satisfied. Especially for complex
code (in particular in the domain of data structures), annotations are usually extensive
and hence mostly added in small steps, requiring tens or hundreds of iterations.

Clearly, the response time of the code verifier (and, in particular, of the automatic
prover running in the back-end) is of crucial importance to its adoption. In the Hyper-
visor verification project [18], for example, we have found verification times per entity
(VCs corresponding to single C functions in that case) of over 30 seconds to be severely
impeding productivity. Considerably longer return times made it virtually impossible to
progress with verification. In fact, verification turnaround times (followed by fickleness
of quantifier instantiation heuristics guiding the underlying SMT solver and difficulty
in understanding verification errors) were reported as the main limiting factor during
the Hypervisor verification project.

1.2 The Challenge

Verifying dynamic data structures is one of the challenges in code verification. This was
also true for the aforementioned Hypervisor verification project (consisting of about
100,000 lines of C code), which used the VCC [8] verifier. In part, this might be due
to the heavy methodology imposed by the verifier. However, we found some evidence
that Dafny [19], a verifier for a type-safe language, performs much better than VCC
on equivalent benchmarks of complex data structures. We suspected the heap encoding
to be the culprit here. To confirm our guess, we have developed a series of benchmark
programs and tested them against several different heap encodings (Sect. 2), including
versions of VCC’s and Dafny’s heap models. These initial benchmarks have shown
the VCC model to be much less efficient, but have also shown surprising differences
between superficially similar heap encodings. Some of these results carried over to
prototypical re-implementations of the heap encoding in VCC, but others did not.

Consequently, we devised a benchmark family of multiply-linked lists (Sect. 3) as
an archetypical example of a recursive data structure. We implemented and specified
the benchmarks in Boogie [2], a minimal intermediate verification language used by
Dafny and VCC, among other verifiers. The axiomatization required is tiny, giving good
guarantees of soundness, and does not require arithmetic. We have also reimplemented
the multiply-linked list benchmarks, or multi-list benchmarks for short, in VCC and
Dafny (both of which have large background axiomatizations using arithmetic).



1.3 Contributions

We propose a new family of benchmarks for both automatic code verifiers and auto-
matic provers, named multi-lists (Sect. 3). These benchmarks can be arbitrarily scaled
in two dimensions (showing trends instead of only scattered data-points), chopped into
pieces (one per assertion), and run against any of the six heap encodings we consider
(none of which is novel, but see Sect. 2). This gives a wealth of benchmarks, which,
we believe, will be found useful by the community and will foster improvements of
automatic provers.

Using our benchmarks, we compare several ATPs and SMT solvers (Sect. 4). This
is the first comprehensive comparison of how well different heap encodings perform on
different reasoning systems. The experiments also show that the proposed benchmarks
are relevant in that our results using the rather low-level Boogie system carry over
to VCC and Dafny and, moreover, behave comparable to benchmarks of real-world
data structures. Since the benchmarks respond, under changes of the heap encoding and
options to the back-end prover (Z3 in our case), similarly in all considered code verifiers
(Boogie, VCC and Dafny), we believe that our results also apply to other verification
systems.

2 Heap Encodings

It is customary to represent the heap as a mapping from indices to values and to provide
functions read() and write() for accessing and updating it. Below we summarize the
read-over-write axioms to characterize these functions [7]. Here, as well as in the rest
of the paper, we use the syntax of the Boogie [2] intermediate verification language.
The predicate disjoint() abstracts from the disequality test between two indices.

axiom (∀ H, p, v • read(write(H, p, v), p) = v);
axiom (∀ H, p, q, v • disjoint(p, q) ⇒ read(write(H, p, v), q) = read(H, q));

Throughout this section, we assume a language with a two-tiered heap, i.e., where
heap access and update require a pointer and a field. Note that this assumption is a gen-
eralization of plain pointer-indexed heaps, because a pseudo-field can always artificially
be constructed, if necessary. Moreover, we use (unbounded) integers to represent values
stored on the heap, an over-approximation of real memory. Our assumptions apply to
many languages such as Java, C#, or Dafny, just to name a few. Applying such a model
to C is also possible, but requires additional work (Sect. 2.1).

Two-tiered heaps can be modeled in (at least) the following six logically equivalent
ways (we abbreviate each heap model name by a short Boogie representation and refer
to heap models by their abbreviation later on):

Linear heap H[dot(p,f)] The heap is addressed by pointers only. It corresponds to the
model sketched above with pointer disequality instantiating the disjointness pred-
icate. Pointer-field pairs are coerced to pointers by means of the free constructor
dot() axiomatized with its projections base() and field():

axiom (∀ p, f • base(dot(p,f)) = p ∧ field(dot(p,f)) = f);
axiom (∀ p • dot(base(p), field(p)) = p);



State-based linear heap H[dot2(p,f)] In some language formalizations (see Sect. 2.1
for more details), the above projections base() and field() only exist for certain
pointers in certain states. We model that by making them dependent on the heap:

axiom (∀ H, p, f • base(H, dot2(p, f)) = p ∧ field(H, dot2(p, f)) = f);
axiom (∀ H, p • dot2(base(H, p), field(H, p)) = p);

Synchronous heap H[p,f] The heap is simultaneously accessed by pointer and field.
Its axiomatization is as follows:

axiom (∀ H, p, f, v • read(write(H, p, f, v), p, f) = v);
axiom (∀ H, p, q, f, g, v • p 6= q ∧ f 6= g ⇒

read(write(H, p, f, v), q, g) = read(H, q, g));

Two-dimensional heap H[p][f] and H[f][p] The heap is laid out in two dimensions, each
addressed by either pointer or field. The only difference between H[p][f] and H[f][p]

is the way values are obtained: For H[p][f], the heap is first addressed by a pointer
and then by a field; for H[f][p], this is vice versa. Its axiomatization consists of two
pairs of read-over-write axioms where disjointness is disequality of pointers and
fields, respectively. For example, the heap model H[p][f] is axiomatized as follows:

axiom (∀ H, p, h • read(write(H, p, h), p) = h);
axiom (∀ H, p, q, h • p 6= q ⇒ read(write(H, p, h), q) = read(H, q));
axiom (∀ h, f, v • read’(write’(h, f, v), f) = v);
axiom (∀ h, f, g, v • f 6= g ⇒ read’(write’(h, f, v), g) = read’(h, g));

Field heaps F[p] Instead of a single heap, there are several distinct heaps, one for each
field. For each such heap, there are distinct functions read() and write(), axiomatized
using read-over-write axioms with pointer disequality as disjointness predicate.

To clarify the description of each of these encodings, let us consider an example
program—a sequence of assignments—and its translation into each of the described
heap encodings. In the translations, the heap, which is only implicit in the program, gets
explicit, which results in ordinary assignments turned into explicit heap assignments.
The different instances of the heaps are numbered starting from 0 (the index of the
initial heap).

Program (without explicit heap)

p.f := 3; p.g := p.f;

Linear heap H[dot(p,f)] (similar for H[dot2(p,f)])

H1 := write(H0, dot(p, f), 3); H2 := write(H1, dot(p, g), read(H1, dot(p, f)));

Synchronous heap H[p,f]

H1 := write(H0, p, f, 3); H2 := write(H1, p, g, read(H1, p, f));

Two-dimensional heap H[p][f]

H1 := write(H0, p, write’(read(H0, p), f, 3));
H2 := write(H1, p, write’(read(H1, p), g, read’(read(H1, p), f)));



Two-dimensional heap H[f][p]

H1 := write(H0, f, write’(read(H0, f), p, 3));
H2 := write(H1, g, write’(read(H1, g), p, read’(read(H1, f), p)));

Field heaps F[p]

F1 := write(F0, p, 3); G1 := write(G0, p, read(F1, p));

2.1 Type-Safe C

In general, C does not comply with our initial assumptions of a two-tiered heap. Instead,
C heap is understood as a linear heap of bytes addressed solely by pointers. Even the
access to structure fields is reduced to plain pointers using address arithmetic. Moreover,
individually addressable entities spanning more than one byte each (e.g., integer values
or floating point numbers) may overlap on the heap. Verifying complex data structure
algorithms in such a setting is out of reach, because complex invariants will be hidden
by layers of pointer arithmetic and numerous disjointness checks.

Fortunately, most C programs are written in a nearly type-safe manner, avoiding
unrestricted casting and pointer arithmetic most of the time. This type-safety intuition
led to the memory model implemented in the current version of VCC [9], which we
will refer to as VCC2 from now on. This model maintains, throughout the execution
of a program, a set of valid pointers and an invariant stating that they do not address
overlapping portions of memory unless required by the type system. For instance, C’s
type system mandates that fields of a structure overlap with the entire structure, but not
with each other. Each valid pointer p has a unique embedding, i.e., another valid pointer
to the structure in which p is directly contained, as well as a unique field that identifies
p within its embedding. The definition of the embedding and the field of a pointer
depend on the current set of valid pointers. Hence, the heap model underlying VCC2
can be approximated by H[dot2(p,f)], although the actual axioms include premises about
p being valid which slows down reasoning.

Along with our experiments (Sect. 4), we created a new memory model for VCC,
dubbed VCC3, which separates the concepts of pointers from that of fields and is
amenable to most of the heap models presented in Sect. 2 (except for F[p]), as it makes
the embedding state-independent. The key idea is to treat C pointers as fat pointers for
specification purposes, i.e., entities consisting of another fat pointer (to the embedding)
and a field. For simple type-safe field accesses, there is just one field object per field of a
source-level structure, corresponding exactly to our assumption about two-tiered heaps.
VCC3 restricts memory accesses to a set of valid pointers, in much the same way as in
the VCC2 model. Valid pointers occupy disjoint memory locations, and thus separate
writes to valid pointers do not interfere. The details, in particular pointer arithmetic,
arrays and casted pointers, are tricky, and will be described in an upcoming paper.

3 Multiply-Linked List Benchmark Family

Algorithms modifying data structures are among the most complex verification chal-
lenges. A simple, yet already sufficiently hard problem is inserting an element into a



head0 tail0

head1tail1

Figure 1. An example of a generalized list with degree 2. The labels in the nodes mark the heads
and tails of the two link sequences.

doubly-linked list. We render this problem even harder by generalizing the list datatype
into a multiply-linked list, or multi-list for short. Instead of one bi-directional link (con-
sisting of pointers next and prev per node) between two nodes, we allow n such links
and call n the degree of the multi-list. Consequently, the nodes of a list are not only
connected by one sequence of links, but there are n sequences, each imposing a (poten-
tially different) order on the list nodes. Figure 1 gives an example of a multi-list with
degree 2 and consisting of three nodes.

For specifying multi-lists, we assume that the following types and functions are
already specified. Their exact semantics is given by the choice of the underlying heap
model (Sect. 2). Here, we turned the heap into a global variable to make the specification
more readable. Moreover, we require a function read ptr() which reads and coerces heap
values into pointers and a function of ptr() which coerces pointers back into integers.

type heap; type ptr; type field;
var H: heap;
function read(H: heap, p: ptr, f: field): int;
procedure write(p: ptr, f: field, v: int) modifies H;
function read ptr(H: heap, p: ptr, f: field): ptr;
function of ptr(p: ptr): int;

All of the previously described heap models except for F[p] can easily provide semantics
to these declarations. For field heaps, we provide several global heaps (one for each
field) as well as copies of the heap-accessing functions.

A multi-list is characterized by its nodes, represented as a set nodes of pointers, as
well as n head and n tail nodes, one head and tail for each link sequence (e.g., head0

and tail0 for the first link sequence). The predicate is node() tests pointers for member-
ship in a multi-list. We require the following properties (collectively referred to as the
invariant of a multi-list) to be fulfilled for valid multi-lists (with examples for the first
link sequence).

– Heads and tails are nodes of the list.

is node(H, list, read ptr(H, list, head0)) ∧ is node(H, list, read ptr(H, list, tail0))

– Each node’s predecessors and successors are again nodes of the list.

(∀ p: Pointer • is node(H, list, p) ⇒
read ptr(H, list, next0) 6= null ∧ is node(H, list, read ptr(H, p, next0)) ∧
read ptr(H, list, prev0) 6= null ∧ is node(H, list, read ptr(H, p, prev0)))

– All heads are their own predecessors, tails are their own successors.



read ptr(H, read ptr(H, list, head0), prev0) = read ptr(H, list, head0) ∧
read ptr(H, read ptr(H, list, tail0), next0) = read ptr(H, list, tail0)

– Each inner node connects bi-directionally with its predecessor and successor. An
inner node’s successor and predecessor is always distinct from the node.

(∀ p: Pointer • is node(H, list, p) ∧ p 6= read ptr(H, list, tail0) ⇒
read ptr(H, read ptr(H, p, next0), prev0) = p ∧
read ptr(H, p, next0) 6= p) ∧

(∀ p: Pointer • is node(H, list, p) ∧ p 6= read ptr(H, list, head0) ⇒
read ptr(H, read ptr(H, p, prev0), next0) = p ∧
read ptr(H, p, prev0) 6= p)

– Each node of the list contains m data fields, and every such data field fulfills an
abstract property good val(). We abbreviate this entire condition by the predicate
node valid().

Given a multi-list with these properties, insertion of a new node into the multi-
list works as follows. First, the data fields of the new node are set in such a way that
they then adhere to the predicate good val(). Second, for each link sequence of the
list, the new node is, based on nondeterministic choice, prepended to the head node or
appended at the tail node. A nondeterministic choice may either be implemented as a
random decision or simply by testing the (arbitrary) value of extra boolean arguments
to the insertion function. Finally, the new node is added to the set nodes of the list.
The verification condition for this function essentially corresponds to showing that the
multi-list invariant also holds for the extended multi-list.

The purpose of nondeterministic choice is to simulate multiple paths, typical for
data structure operations (e.g., red-black tree rotations have four cases). The number
of paths is exponential in the number of links, but some provers may reuse parts of
the proof between paths. Note that if the VC generator splits the paths before passing
them to the prover, this will result in highly symmetric VCs—exponentially many in
the number of links–being generated. Therefore, we also consider cases without nonde-
terministic choice, where we prepend to each list.

To better illustrate the mutual pointer updates, we give here the code which prepends
a new node p in front of the head of the first link sequence (head0) of the multi-list d.

call write(p, next0, read(H, d, head0));
call write(p, prev0, of ptr(p));
assume node valid(H, read ptr(H, d, head0));
call write(read ptr(H, d, head0), prev0, of ptr(p));
call write(d, head0, of ptr(p));
assert node valid(H, read ptr(H, read ptr(heap, d, head0), next0));

The case of n = 1 and m = 1 corresponds to a doubly-linked list with one data item
per node. We consider cases where the degree of a mult-list n≤ 3 and the number of data
fields m ≤ 10 practically relevant, e.g., tree datatypes with several data fields fall well
into this category with respect to the effort needed to verify corresponding functionality.
For studying the impact of the coefficients n and m, we will also consider greater values
in our experiments. It is clear that the burden on automatic provers increases drastically



Automated prover Configuration
E 1.2 −l5 −tAutoDev

SPASS 3.7 −Auto −PGiven=0 −PProblem=0 −Splits=0 −FullRed=0
−DocProof −VarWeight=3

Vampire 0.6 (r903) −−mode casc

CVC3 2011-01-27
Fx7 r1074 −o:MaxInstRounds=30,MaxQuantIters=2000

Yices 1.0.29
Z3 2.18 AUTO CONFIG=false

Z3+3p 2.18 CASE SPLIT=3 DELAY UNITS=true SORT AND OR=false
QI EAGER THRESHOLD=100 RESTART STRATEGY=0
RESTART FACTOR=1.5 AUTO CONFIG=false

Table 1. Automated provers used in the experiments and their configuration. Z3+3p is Z3 (version
2.18), but invoked with the configuration used by Boogie.

by increasing n. This is far the less the case when increasing m. Hence, scaling n yields a
good coarse-grained criterion, whereas scaling m provides smooth, fine-grained trends.

We use the naming scheme n/m to refer to the multi-list insertion benchmark with
n link sequences and m data fields. Benchmarks without nondeterministic choice are
indicated by a minus superscript (e.g., 3/9−).

4 Experiments

We compare seven different automatic provers as well as all heap models described
in Sect. 2 (our benchmarks and results can be obtained from http://research.

microsoft.com/~moskal/multilist.aspx). We used the ATPs E [27], SPASS [30],
and Vampire [26], and we applied the SMT solvers CVC3 [4], Fx7 [22], Yices [13],
and Z3 [11]. See Table 1 for the exact prover versions and their configurations. The
configurations for the ATPs are the same as used in the most recent version of Is-
abelle/HOL [25], namely Isabelle2011, which was our best guess as to how to configure
them. CVC3 and Yices do not seem to offer options that could be relevant. Fx7 is the
historical entry from SMTCOMP 2007, run with the same options as in the competition.
The results for Z3 should be taken with a grain of salt as its auto-configuration features
fail due to a bug in the current version. This, however, does not affect the Z3+p and
Z3+p3 configurations, which were used in more extensive experiments described later
(starting with Sect. 4.2).

4.1 Comparing ATPs with SMT Solvers

We used benchmarks 1/1− and 2/2−, and generated one proof obligation per assertion.
The check of the multi-list invariant at the end was split into separate assertions, one per
conjunct. This yields 33 proof obligations per model. Table 2 summarizes the results of
this experiment.

Among all models, F[p] is the most efficient: Most VCs are proved with this model,
and mostly even in the shortest average time. However, it is unclear how to implement

http://research.microsoft.com/~moskal/multilist.aspx
http://research.microsoft.com/~moskal/multilist.aspx


Model CVC3 E Fx7 SPASS Vampire Yices Z3 Z3+p Total
H[dot2(p,f)] 2 .04 4 .09 2 2.04 5112.99 20 2.08 2 .08 3187.68 33 .43 203 9.09

H[p][f] 937.92 5 .15 1644.09 6 35.46 2011.67 27 9.19 2 .03 32 .43 24910.58
H[dot(p,f)] 1227.09 4 .09 2422.64 9 19.47 20 1.64 3152.16 26 20.34 33 .37 29112.33

H[p,f] 11 3.23 9 3.76 2721.59 9 50.67 25 6.31 32 3.80 33 1.58 33 .29 311 5.83
H[f][p] 9 .49 11 .59 33 9.37 10 21.69 22 1.91 33 1.06 33 1.64 33 .12 316 2.45

F[p] 18 .07 1522.03 33 1.02 23 17.83 33 1.21 33 .04 33 .04 33 .04 353 2.43
Total 6111.60 48 7.76 13516.14 62 32.84 140 3.91 15812.80 130 9.23 197 .28 1723 6.68

Table 2. Number of assertions solved and, in subscript, the average time of successful proofs in
seconds for multi-list benchmarks 1/1− and 2/2−. The timeout was set to 600 seconds, and the
tests run on a 2.8 GHz Windows 7 PC.

this model when field names are not known statically, which is the case for virtually
all C programs. Second best in terms of proved VCs is H[f][p] for nearly all systems,
followed by H[p,f] (only for Vampire, the order of these two models is swapped). Note
that both H[f][p] and H[p,f] do not suffer from implementation problems as F[p]. We will
see similar results in more complex benchmarks run by Z3 in Sect. 4.3 below.

The general trend is that SMT solvers are faster and solve more problems than ATPs,
but Vampire is competitive, when presented with fragmented VCs, with the leading
SMT solvers used in their default configurations. As we will see in the next section,
it does not perform so well when one VC per problem is generated. Reasoning with
quantifiers is a field in which ATPs usually excel SMT solvers, but when we manually
supply additional hints on quantified formulas, in the form of patterns, SMT solvers
easily outperform ATPs (see, e.g., Z3+p in the last column of Table 2).

4.2 Guiding SMT Solver with Patterns

A pattern [24] for a quantified formula ∀x.ψ is a set of terms {t0, . . . , tn}, typically
subterms of ψ . The solver can instantiate ψ with the substitution σ by adding a tau-
tology (∀x.ψ)⇒ σ(ψ) to the logical context. It will do so if σ(t0), . . . ,σ(tn) have an
interpretation in the currently considered partial ground model.

Patterns are the standard approach for handling quantifiers in SMT solvers. All
solvers used in our evaluation come with their own inference algorithms to automat-
ically derive patterns. Except for Yices, all considered SMT solvers also provide syntax
to manually add patterns to problems, effectively overriding the solver’s internal pattern
inference and providing direct user control over how solvers perform quantifier instan-
tiations. While patterns are sometimes dismissed as a poor man’s substitute for proper
quantifier reasoning methods, they are often used to effectively program a custom deci-
sion procedure in the SMT solver [10,23]. Moreover, they give SMT solvers significant
edge over ATPs in software verification scenarios.

Table 3 summarizes runs of ATPs as well as different SMT solvers with (indicated
by the suffix +p) or without pattern annotations. As opposed to Table 2, the benchmarks
are not split by assertion, but each is given as one VC to the solvers. We see that, when
provided with explicit patterns, Z3 is clearly the most successful and fastest solver.



Model CVC3+p Fx7 Fx7+p Vampire Yices Z3 Z3+p Z3+p3 Total
H[p][f] 2 69.61 0 753.83 0 1 4.92 0 6 3.62 929.52 3426.15

H[dot2(p,f)] 3 34.78 0 569.96 0 0 0 753.66 10 2.04 3524.96
H[dot(p,f)] 6150.85 2153.15 418.89 0 179.26 2294.07 1040.18 10 1.47 4553.06

H[p,f] 3178.28 2 94.47 727.90 0 243.21 6126.86 813.07 10 .60 4839.19
H[f][p] 6 97.21 6180.64 1017.65 0 628.11 6 30.69 612.87 10 .18 6037.95

F[p] 7 11.25 10 29.01 10 9.25 37.65 10 .27 10 13.27 10 .24 10 .10 80 7.80
Total 27 86.87 20 93.46 4329.45 37.65 2017.10 24 69.42 4720.92 595.25 30229.58

Table 3. Number of benchmarks solved by different systems. Systems not mentioned in the table
timeout on all benchmarks. Benchmarks: 1/1−, 1/10−, 2/2−, 2/10−, 3/3−, 1/1, 1/10, 2/2,
2/10, and 3/3.

Prover Common Unique T/O Prover Common Unique T/O Ratio
Z3 15318.12 192.67 91600.00 Z3+p 153 .70 9110.25 1600.00 35.1
CVC3 6111.60 0 164600.00 CVC3+p 61 .54 16426.49 0 22.6
Fx7 15526.12 0 86600.00 Fx7+p 1551.81 8615.35 0 34.8
Z3+p 244 4.26 0 13600.00 Z3+p3 244 .28 1319.45 0 27.6

Table 4. The first row shows that Z3 can solve 153 benchmarks both with and without patterns in
average time per benchmark of 18.12 seconds and 0.70 seconds, respectively. There are 91 bench-
marks that Z3 timeouts on (labelled T/O), and which Z3+p solves in an average time of 10.25
seconds, and the single benchmark that Z3+p timeouts on is solved by Z3 in 92.67 seconds. If
we add up the three columns for each prover, Z3+p is 35.1 times faster (another approach would
be to ignore timeouts and divide 18.12 by 0.70; this yields results in the same ballpark).

Boogie runs Z3 with specific options (see Table 1), indicated by the suffix +p3. Sep-
arate experiments showed that among these options, which configure Z3’s SAT solver
and quantifier heuristics, CASE SPLIT=3 is most important. This causes Z3 not to use
the common SAT case-split selection strategy (based on variable activity), but to try to
satisfy the formula from left to right. Our results show that this configuration outper-
forms all provers, even the standard configuration of Z3.

To compare the relative performance impact of patterns and case-split selection we
compared the cumulative run times of solvers when solving the proof obligations of
Table 2 and those of Table 3 in all six heap encodings ((33+ 10)× 6 encodings =
258 benchmarks). When only one solver of the pair could solve the benchmark, we
took the time of the other to be 600 seconds (the timeout value). Table 4 summarizes
the findings. The pattern speedups for Z3, CVC3 and Fx7 are roughly 1.5 order of
magnitude, and would be larger had we decided to penalize timeouts more. Moreover,
Z3+p3 is 27.8 times faster than Z3+p. Thus, a custom case-split selection strategy gives
another 1.5 order of magnitude over just using patterns.



0

10

20

30

40

50

1 link 2 links 3 links 4 links

Plot 1. Boogie

H[dot2(p,f)]
H[dot(p,f)]
H[p][f]
H[p,f]
H[f][p]

0

10

20

30

40

1 link 2 links 3 links 4 links

Plot 2. VCC

VCC2
H[dot(p,f)]
H[p][f]
H[p,f]
H[f][p]

0

10

20

30

40

1 link 2 links 3 links

Plot 3. Dafny

H[dot(p,f)]
H[p][f]
H[p,f]
H[f][p]

0

2

4

6

8

1 link 2 links 3 links 4 links

Plot 4. Boogie (fast models)

H[f][p]
H[f][p] (arrays)
F[p]

Figure 2. Multi-list benchmark using different heap encodings and different programming lan-
guages. The x axis shows the complexity of the benchmark in order 1/1, 1/2, ..., 1/20, 2/1, ...,
2/20, ..., 4/20. The y axis shows the median runtime (in seconds) of Z3 run with 6 different
random seeds.

4.3 Scaling up

We subsequently compared different heap encodings in different languages using the
fastest solver from the previous section: Z3+p3, i.e., Z3 using patterns and the options
used by Boogie. Plots 1, 2, and 3 in Fig. 2 show run times of our benchmarks in Boogie,
VCC, and Dafny. We were unable to supply some of the pattern annotations to Dafny,
which explains its poor performance relative to VCC. Still, it shows similar trends. We
omitted all timed-out data points. We see similar results in terms of order, in particular
the H[f][p] representation is always the fastest, and collapsing p and f into a single entity,



especially using VCC2’s dot2() function, performs very badly. This similarity gives us
some confidence that experiments with other models would also carry over from Boogie
to different verification systems.

Plot 4 shows the results of experiments with representations which are not imple-
mented in VCC3, namely the F[p] and H[f][p] with the built-in array theory [12]. The
F[p] representation brings about an order of magnitude speedup over H[f][p]. It is, how-
ever, known to be tricky to handle soundly and modularly: Often the accessed field
is not known statically. Additionally, functions generally need to be allowed to write
freshly allocated objects, which means they potentially write all fields in the heap, and
thus modeling function calls reduces the benefits of F[p]. One can use different splits of
the heap into field components in different functions, and maintain some consistency
invariants between them, which is something we want to explore in the future.

The array decision procedure shows some speedup, but except for the biggest bench-
mark it is small (within 20%). It does so by avoiding certain instantiations of read-over-
write axioms, which can lead to incompleteness when patterns are used to guide instan-
tiations of user-provided axioms. Thus, in the context of VCC, using it is unlikely to be
a good idea.

4.4 Interpretation of the Results

The two linear models, H[dot2(p,f)] and H[dot(p,f)], perform poorly because the prover
needs to instantiate several axioms to prove disjointness of heap accesses. This is par-
ticularly painful when there are also a lot of other axioms to instantiate (i.e., in VCC
or Dafny), and the prover will often instantiate those other axioms first. Especially the
dot2() axioms are complicated, much more than the dot() axioms.

As for H[f][p] compared with H[p,f] or H[p][f], consider a write to x.a and subsequent
reads of y.b and z.c. To find that writing x.a did not clobber the value of y.b in H[f][p], the
prover can establish a 6= b, which is usually immediate, and moreover if b = c then the
value of z.c will be known without further quantifier instantiations. Similar reasoning
holds for H[p][f] and x 6= y, but the pointer comparison usually involves complex rea-
soning (e.g., x was valid at some point, whereas y was not). Finally, in H[p,f] the prover
can prove disjointness of either fields or pointers, but there is no reuse of instantiations
for different heap accesses.

Difficult benchmarks typically have many invariants quantifying over pointers. For
example, proving each of the quantified invariants in our artificial benchmark introduces
a new Skolem constant nsk and in turn nsk.previ, nsk.nexti, etc. Thus, difficult benchmarks
are likely to use many more pointers than fields, making the reuse in H[f][p] much more
significant.

The H[p][f] behaves surprisingly poorly. Initially we thought it was a Z3-specific
problem (it seems to be generating very large conflict clauses in this case, which talk
about distinctness of pointers), but it obviously also occurs in other provers.

4.5 Checking Real-World Verification Examples

Table 5 lists results of applying VCC with different heap encodings on verification of
common data structures stemming from the VACID-0 benchmark suite [20]: binomial



Testcase VCC2 VCC3 Ratio
Heap.c: Heap adm 0.14 ±0.01 0.10 ±0.00 1.3×
Heap.c: extractMin 15.55 ±4.40 7.95 ±1.63 2.0×
Heap.c: heapSort 7.11 ±3.84 0.27 ±0.01 26.4×
Heap.c: heapSortTestHarness 1.03 ±0.11 0.14 ±0.00 7.6×
Heap.c: init 0.14 ±0.00 0.10 ±0.00 1.4×
List.c: InitializeListHead 0.20 ±0.01 0.14 ±0.00 1.5×
List.c: InsertHeadList 8.12 ±0.64 1.02 ±0.05 8.0×
List.c: InsertTailList 8.45 ±0.69 0.95 ±0.07 8.9×
List.c: IsListEmpty 0.10 ±0.00 0.07 ±0.00 1.4×
List.c: RemoveEntryList 4.64 ±0.23 0.53 ±0.03 8.8×
List.c: RemoveHeadList 4.75 ±0.12 0.49 ±0.03 9.6×
List.c: RemoveTailList 4.12 ±0.12 0.52 ±0.07 8.0×
List.c: LIST MANAGER adm 0.22 ±0.01 0.15 ±0.01 1.5×
RedBlackTrees.c: Tree adm 0.59 ±0.01 0.40 ±0.01 1.5×
RedBlackTrees.c: left rotate 108.40 ±22.74 12.90 ±4.43 8.4×
RedBlackTrees.c: right rotate 97.06 ±14.07 13.44 ±0.77 7.2×
RedBlackTrees.c: tree find 0.14 ±0.00 0.13 ±0.01 1.0×
RedBlackTrees.c: tree init 0.13 ±0.00 0.11 ±0.00 1.2×
RedBlackTrees.c: tree insert 94.17 ±9.53 3.14 ±0.24 30.0×
RedBlackTrees.c: tree lookup 0.12 ±0.00 0.08 ±0.00 1.5×

Table 5. Detailed comparison of different heap models in VCC3 against each other and VCC2.
Times are median for 6 runs with different random seeds, given in seconds.

heaps, doubly-linked lists, and red-black trees. VCC3 (using the H[f][p] model) shows,
in comparison with the current model of VCC (VCC2), about an order of magnitude of
speedup on non-trivial functions.

We also conducted comparisons of heap models for the VACID-0 benchmarks. Due
to overheads of the VCC axiomatizations, the differences between the heap encodings
are not as dramatic as with our artificial multi-list benchmarks. Nevertheless, we found
similar trends as in the other experiments, with H[f][p] being the best model. Thus, we
consider the multi-list benchmark to be representative for real-world benchmarks.

5 Related Work

Many existing program verifiers support the selection of automatic back-end provers [2,
14, 16, 17], but so far, none has reported a thorough comparison between the automatic
provers. Notably Jahob [31] uses both ATPs (E and SPASS) and SMT solvers (CVC3
and Z3) as background provers, among others.

None of the presented heap models is novel, and in fact, most of them are standard
in program verifiers. For example, the state-based linear heap is used by VCC [9], the
synchronous heap is underlying Dafny’s memory model [19], and field heaps, due to [5,
6], are used by Jahob [31].



Challenges for program verifiers have been posed before [20], but we know of only
one further proposal [1] of scalable benchmarks to evaluate the behaviour of automatic
provers.

6 Conclusion

We have proposed a scalable and challenging benchmark taken from the domain of data
structures, and tested it on a number of heap encodings and verification systems (Boo-
gie, VCC and Dafny). The experiments gave similar results in terms of tendency (i.e.,
indicating a clear order of encodings with respect to performance) for the three systems.
Additionally, testing realistic C benchmarks with a subset of the heap encodings yielded
similar results. We thus believe that the multi-list benchmark is a good representative
of benchmarks stemming from modular software verification, while being simple (no
arithmetic required and no soundness problems) and scalable.

We have confirmed the folklore that splitting the heap by fields performs best, but
have also put concrete numbers on that claim. We have also tested the performance
impact of using a dedicated decision procedure for the array theory.

We have found that the performance of ATPs is comparable with that of SMT sys-
tems when software verification problems are provided without any additional hints and
in small fragments. This may be particularly useful for parts of VCs without explicitly
engineered patterns, such as those coming from the user of the verification tool. Pro-
cessing the bigger chunks of the VC at once will likely be needed, if ATPs are to meet
the performance requirements of today’s verification demands.

Pattern annotations give SMT solvers a huge advantage over ATPs (at least 1.5
orders of magnitude). It would be very desirable for the ATPs to take advantage of
these (e.g., via hints [29] as implemented in Otter [21]), maybe to guide term ordering
heuristics. Similarly, a custom case split strategy further improves Z3’s performance by
1.5 orders of magnitude.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. New results on rewrite-based satis-
fiability procedures. ACM Transactions on Computational Logic, 10(1), 2009.

2. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modular
reusable verifier for object-oriented programs. In FMCO 2005, volume 4111 of LNCS, pages
364–387. Springer, 2005.

3. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
http://www.SMT-LIB.org, 2010.

4. C. Barrett and C. Tinelli. CVC3. In W. Damm and H. Hermanns, editors, Computer Aided
Verification, volume 4590 of LNCS, pages 298–302. Springer-Verlag, 2007.

5. R. Bornat. Proving pointer programs in Hoare Logic. In Mathematics of Program Construc-
tion, volume 1837 of LNCS, pages 102–126. Springer, 2000.

6. R. M. Burstall. Some techniques for proving correctness of programs which alter data struc-
tures. Machine Intelligence, 7:23–50, 1972.

7. R. Cartwright and D. Oppen. The logic of aliasing. Acta Informatica, 15:365–384, 1981.

http://www.SMT-LIB.org


8. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,
and S. Tobies. VCC: A practical system for verifying concurrent C. In TPHOLs 2009,
volume 5674 of LNCS, pages 23–42. Springer, 2009.

9. E. Cohen, M. Moskal, S. Tobies, and W. Schulte. A precise yet efficient memory model for
C. ENTCS, 254:85–103, 2009.

10. J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking and property
checking for low-level code. In POPL, pages 302–314. ACM, 2009.

11. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS 2008, volume 4963
of LNCS, pages 337–340. Springer, 2008.

12. L. M. de Moura and N. Bjørner. Generalized, efficient array decision procedures. In Formal
Methods in Computer-Aided Design, pages 45–52. IEEE, 2009.

13. B. Dutertre and L. de Moura. The Yices SMT solver, 2006. Available at http://yices.
csl.sri.com/tool-paper.pdf.

14. J.-C. Filliâtre. Why: a multi-language multi-prover verification tool. Research Report 1366,
LRI, Université Paris Sud, Mar. 2003.

15. C. A. R. Hoare. The verifying compiler: A grand challenge for computing research. Journal
of the ACM, 50(1):63–69, 2003.

16. P. James and P. Chalin. Faster and more complete extended static checking for the Java
Modeling Language. Journal of Automated Reasoning, 44:145–174, 2010.

17. V. Kuncak. Modular Data Structure Verification. PhD thesis, EECS Department, Mas-
sachusetts Institute of Technology, February 2007.

18. D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V Hypervisor with VCC. In
Formal Methods, volume 5850 of LNCS, pages 806–809. Springer, 2009.

19. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR-
16, volume 6355 of LNAI, pages 348–370. Springer, 2010.

20. K. R. M. Leino and M. Moskal. VACID-0: Verification of Ample Correctness of Invariants
of Data-structures, Edition 0. In Proceedings of Tools and Experiments Workshop at VSTTE,
2010.

21. W. McCune. OTTER 3.3 Reference Manual. Mathematics and Computer Science Division,
Argonne National Laboratory, Technical Memorandum No. 263, 2003.

22. M. Moskal. Fx7 or in software, it is all about quantifiers. In Satisfiability Modulo Theories
Competition, 2007.

23. M. Moskal. Programming with triggers. In SMT 2009, pages 20–29. ACM, 2009.
24. G. Nelson. Techniques for program verification. Technical Report CSL-81-10, Xerox PARC,

1981.
25. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-

Order Logic, volume 2283 of LNCS. Springer, 2002.
26. A. Riazanov and A. Voronkov. The design and implementation of Vampire. AI Comm.,

15(2–3):91–110, 2002.
27. S. Schulz. System description: E 0.81. In D. Basin and M. Rusinowitch, editors, IJCAR,

volume 3097 of LNAI, pages 223–228. Springer, 2004.
28. G. Sutcliffe. The TPTP problem library and associated infrastructure. Journal of Automated

Reasoning, 43(4):337–362, 2009.
29. R. Veroff. Using hints to increase the effectiveness of an automated reasoning program: Case

studies. Journal of Automated Reasoning, 16:223–239, 1996.
30. C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski. SPASS

version 3.5. In Automated Deduction, volume 5663 of LNCS, pages 140–145. Springer,
2009.

31. K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of linked data structures.
In Programming Language Design and Implementation, pages 349–361. ACM, 2008.

http://yices.csl.sri.com/tool-paper.pdf
http://yices.csl.sri.com/tool-paper.pdf

	Heaps and Data Structures:A Challenge for Automated Provers

