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Abstract

Efficient handling of quantifiers is crucial for solving software verification problems. E-matching algorithms
are used in satisfiability modulo theories solvers that handle quantified formulas through instantiation. Two
novel, efficient algorithms for solving the E-matching problem are presented and compared to a well-known
algorithm described in the literature.
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1 Motivation

Satisfiability Modulo Theories (SMT) solvers usually operate in the quantifier-free
fragments of their respective logics. Yet program verification problems often require
expressiveness and flexibility in extending the underlying background theories with
universally quantified axioms. The typical solution to this problem is to generate
ground instances of the quantified subformulas during the course of the proof search
and hope that the particular instances generated are the ones required to prove
unsatisfiability.

As an example, consider the following formula, which we try to satisfy modulo
linear arithmetic and uninterpreted function symbols theories:

P (f(42)) ∧ ∀x. P (f(x)) ⇒ x < 0
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If the prover were able to guess the implication:

(∀x. P (f(x)) ⇒ x < 0) ⇒ P (f(42)) ⇒ 42 < 0

then, by boolean unit resolution (with the currently known facts P (f(42)) and
∀x. P (f(x)) ⇒ x < 0), the prover would try to assert 42 < 0, which would cause
contradiction in the linear arithmetic decision procedure.

The tricky part is how to figure out which instances are going to be useful. A
well-known [7] solution is to designate subterms occurring in the quantified formula
called triggers, and only add instances that make those subterms equal to ground
subterms that are currently being considered in the proof. In our example one such
trigger is P (f(x)), which works as expected.

However it is often not enough to consider only syntactic equality. If we modify
our example a little bit:

a = f(42) ∧ P (a) ∧ ∀x. P (f(x)) ⇒ x < 0

then our choice of trigger no longer works. We could use a less restrictive trigger
(namely f(x)), but such a trigger leads to generating excessive, irrelevant instances,
which reduces the efficiency of the prover. We therefore use a different technique:
instead of using syntactic equality, use the equality relation induced by the current
context 5 . For example: in the context P (a), a = f(42) the substitution [x := 42]
makes the term P (f(x)) equal to P (a).

Because we do not treat boolean formulas as terms, it is sometimes not possible
to designate a single trigger containing all the variables that are quantified. A
classical example is the transitivity axiom. In such a case we use a multitrigger,
which is a set of triggers, hopefully sharing variables, that are supposed to match
simultaneously.

There are two remaining problems here: identifying the set of triggers for a
given formula, and identifying the substitutions that make the trigger equal to
some ground term. As for the first problem, it is possible to apply heuristics 6 , as
well as ask the user to provide the triggers. The second problem is E-matching.
We present a well-known algorithm for solving the E-matching problem (Sect. 3),
introduce two other, efficient algorithms (Sect. 4 and 5) and compare them to the
well-known one.

2 Definitions

Let V be the infinite, enumerable set of variables. Let Σ be the set of function and
constant symbols. Let T be the set of first order terms constructed over Σ and V.

A substitution is a function σ : V → T that is not the identity only for a finite
subset of V. We identify a substitution with its homomorphic extension to all terms
(i.e., σ : T → T ). Let S be the set of all substitutions.

We will use letters x and y, possibly with indices for variables, f and g for
function symbols, c and d for constant symbols (functions of arity zero), σ and ρ

for substitutions, t for ground terms, and p for possibly non-ground terms. We

5 SMT solvers usually refute a formula ψ by refuting every boolean assignment to literals of ψ that make
ψ true. The term “current context” refers to such an assignment (which can be partial).
6 Some heuristics are described in the Simplify technical report [7].
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will use the notation [x1 := t1, . . . , xn := tn] for substitutions, and σ[x := t] for a
substitution augmented to return t for x.

An instance of an E-matching problem 7 consists of a finite set of active ground
terms A ⊆ T , a relation ∼=g ⊆ A×A, and a finite set of non-variable, non-constant
terms p1, . . . , pn, which we call the triggers. Let ∼= ⊆ T × T be the smallest con-
gruence relation over Σ containing ∼=g. Let root : T → T be a function 8 such
that:

(∀t, s ∈ T . root(t) = root(s) ⇔ t ∼= s) ∧ (∀t ∈ T . root(t) ∼= t)

The solution to the E-matching problem is the set:

T =

{
σ

∣∣∣∣∣ ∃t1, . . . , tn ∈ A. σ(p1) ∼= t1 ∧ . . . ∧ σ(pn) ∼= tn,

∀x ∈ V. σ(x) = root(σ(x))

}
The problem of deciding for a fixed A and ∼=g, and a given trigger, if T 6= ∅, is

NP-hard [12]. The NP-hardness is why each solution to the problem is inherently
backtracking in nature. In practice, though, the triggers that are used are small,
and the problem is not the complexity of a backtracking search for a particular
trigger, but rather the fact that in a given proof search there are often hundreds of
thousands of matching problems to solve.

3 Simplify’s Matching Algorithm

Simplify is a legacy SMT system, the first one to efficiently combine theory and
quantifier reasoning. This combination made it a popular target for various software
verification systems. The Simplify technical report [7] describes a recursive matching
algorithm simplify match given in Fig. 1. The symbol :: denotes a list constructor,
nil is an empty list, [x1, . . . , xn] is a shorthand for x1 :: . . . :: xn :: nil, and [] is an
empty (identity) substitution. hd and tl are the functions returning, respectively,
head and tail of a list (i.e., hd(x :: y) = x and tl(x :: y) = y). The command skip
is a no-op.

The simplify match algorithm maintains the current substitution and a stack
(implemented as a list) of (trigger, ground term) pairs to be matched. We refer to
these pairs as jobs. Additionally, it uses the special variable ∗ in place of a ground
term to say that we are not interested in matching against any specific term, as any
active term will do.

We start (line marked /∗ 4 ∗/) by putting the set of triggers to be matched on
the stack and then proceed by taking the top element of the stack.

If the trigger in the top element is a constant (/∗ 1 ∗/), we just compare it against
the ground term, and if the comparison succeeded, recurse.

If the trigger is a variable x (/∗ 2 ∗/), we check if the current substitution already
assigns some value to that variable, and if so, we just compare it against the ground
term t. Otherwise, we extend the current substitution by mapping x to t and

7 In the automated reasoning literature, the term E-matching usually refers to a slightly different problem,
where A is a singleton and ∼= is not restricted to be finitely generated [15]. On the other hand the Simplify
technical report [7] as well as the recent Z3 paper [6] use the term E-matching in the sense defined above.
8 Such a function exists by virtue of ∼= being an equivalence relation, and is provided by the typical data
structure used to represent ∼=, namely the E-graph (see Simplify technical report [7] for details on E-graph).

3



Moskal,  Lopuszański, and Kiniry

fun simplify match([p1, . . . , pn])
R := ∅
proc match(σ, j)

if j = nil then R := R ∪ {σ}
else case hd(j) of

(c, t) ⇒ /∗ 1 ∗/
if c ∼= t then match(σ, tl(j))
else skip

(x, t) ⇒ /∗ 2 ∗/
if σ(x) = x then match(σ[x := root(t)], tl(j))
else if σ(x) = root(t) then match(σ, tl(j))
else skip

(f(p1, . . . , pn), t) ⇒ /∗ 3 ∗/
foreach f(t1, . . . , tn) in A do

if t = ∗ ∨ root(f(t1, . . . , tn)) = t then

match(σ, (p1, root(t1)) :: . . . :: (pn, root(tn)) :: tl(j))
match([], [(p1, ∗), . . . , (pn, ∗)]) /∗ 4 ∗/
return R

Fig. 1. Simplify’s matching algorithm

recurse. Observe that t cannot be ∗ because we do not allow a trigger to be a single
variable, and ∗ is only paired with triggers in the initial call, never with subtriggers.

If the trigger is a complex term f(p1, . . . , pn) (/∗ 3 ∗/), we iterate over all the
terms with f in the head (possibly checking if they are equivalent to the ground term
we are supposed to match against), construct the set of jobs matching respective
children of the trigger against respective children of the ground term, and recurse.

The important invariants of simplify match are: (1) the jobs lists contain stars
instead of ground terms only for non-variable, non-constant triggers; (2) all the
ground terms t in the job lists satisfy root(t) = t; (3) for all x either σ(x) = x or
σ(x) = root(σ(x)).

The detailed discussion of this procedure is given in the Simplify technical re-
port [7].

4 Subtrigger Matcher

This section describes a novel matching algorithm, optimized for linear triggers.
A linear trigger is a trigger in which each variable occurs at most once. Most
triggers used in the program verification problems we have inspected are linear. The
linearity means that matching problems for subterms of a trigger are independent,
which allows for more efficient processing.

However, even if triggers are not linear, it pays off to treat them as linear, and
only after the matching algorithm is complete discard the resulting substitutions
that assign different terms to the same variable. This technique is often used in
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fun fetch(S, t, p)
if S = > then return {[p := root(t)]}
else if S = × ∧ t ∼= p then return {[]}
else if S = × then return ∅
else return S(root(t))

fun match(p)
case p of

x ⇒ return >
c ⇒ return ×
f(p1, . . . , pn) ⇒

foreach i in 1 . . . n do Si := match(pi) /∗ 1 ∗/
if ∃i. Si = ⊥ then return ⊥ /∗ 2 ∗/
if ∀i. Si = × then return × /∗ 3 ∗/
S := {t 7→ ∅ | t ∈ A}
foreach f(t1, . . . , tn) in A do /∗ 4 ∗/

t := root(f(t1, . . . , tn))
S := S[t 7→ S(t) t (fetch(S1, t1, p1) u . . . u fetch(Sn, tn, pn))]

if ∀t. S(t) = ⊥ then return ⊥
else return S

fun topmatch(p) /∗ 5 ∗/
S := match(p)
return

⊔
t∈A S(t)

fun subtrigger match([p1, . . . , pn])
return topmatch(p1) u . . . u topmatch(pn)

Fig. 2. Subtrigger matching algorithm

term indexes [16] used in automated reasoning. The algorithm, therefore, does not
require the trigger to be linear.

This matcher algorithm is given in Fig. 2. It uses operations u and t, which are
defined on sets of substitutions:

A uB = {σ ⊕ ρ | σ ∈ A, ρ ∈ B, σ ⊕ ρ 6= ⊥}

A tB = A ∪B

σ ⊕ ρ =

⊥ when ∃x. σ(x) 6= x ∧ ρ(x) 6= x ∧ σ(x) 6= ρ(x)

σ · ρ otherwise

σ · ρ(x) =

 σ(x) when σ(x) 6= x

ρ(x) otherwise
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u returns a set of all possible non-conflicting combinations of two sets of substitu-
tions. t sums two such sets. The next section shows an implementation of these
operations that does not use explicit sets.

The match(p) function returns the set of all substitutions σ, such that σ(p) ∼= t,
for a term t ∈ A, categorized by root(t). More specifically, match returns a map
from root(t) to such substitutions, or one of the special symbols >, ⊥, ×. Symbol
> means that p was a variable x, and therefore the map is: {t 7→ {[x := t]} | t ∈
A, root(t) = t}, symbol ⊥ represents no matches (i.e., {t 7→ ∅ | t ∈ A, root(t) =
t}), and × means p was ground, so the map is {root(p) 7→ {[]}} ∪ {t 7→ ∅ | t ∈
A, t = root(t), t 6= p} 9 .

The only non-trivial control flow case in the match function is the case of a
complex trigger f(p1, . . . , pn), which works as follows:

• /∗ 1 ∗/ recurse on subtriggers. Conceptually, we consider the subtriggers to be
independent of each other (i.e., f(p1, . . . , pn) is linear). If they are, however,
dependent, then the u operation filters out conflicting substitutions.

• /∗ 2 ∗/ check if there is any subtrigger that does not match anything, in which
case the entire trigger does not match anything.

• /∗ 3 ∗/ check if all the children of f(p1, . . . , pn) are ground, in which case f(p1, . . . , pn)
is ground as well.

• /∗ 4 ∗/ otherwise we start with an empty result map S and iterate over all terms
with the correct head symbol. For each such term f(t1, . . . , tn), we combine (using
t) the already present results for root(f(t1, . . . , tn)) with results of matching pi
against ti. The fetch function is used to retrieve results of subtrigger matching
by ensuring the special symbols are treated as the maps they represent.

Finally (/∗ 5 ∗/) the topmatch function just collapses the maps into one big set.

4.1 S-Trees

This section introduces a new data structure, s-tree, which is used to compactly
represent sets of substitutions, so they can be efficiently manipulated during the
matching.

The s-trees data structure itself can be viewed as a special case of substitution
trees used in automated reasoning [16] with rather severe restrictions on their shape.
We, however, do not use the trees as an index and, as a consequence, require a
different set of operations on s-trees than those defined on substitution trees.

S-trees require a strict, total order ≺ ⊆ A×A and are defined inductively: (1)
ε is an s-tree; (2) if T1, . . . , Tn are s-trees and t1, . . . , tn are ground terms, then the
pair x � ([(t1, T1), . . . , (tn, Tn)]) is an s-tree.

The invariant of the s-tree data structure is that in each node the term t1, . . . , tn
are sorted according to ≺ (i.e. for all i and j, i < j ⇒ ti ≺ tj) 10 , and that there
exists a sequence of variables x1 . . . xk such that the root has the form x1 � (. . .)

9 Here we assume all the ground subterms of triggers to be in A. This is easily achieved and does not affect
performance in our tests.
10This invariant is employed in implementation of the t operator.
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Fig. 3. Example of s-tree operations

and each node (including the root) has the form:

(i) xi � ([(t1, xi+1 � (. . .)), . . . , (tn, xi+1 � (. . .))]) or

(ii) xk � ([(t1, ε), . . . , (tn, ε)])

for some n, t1, . . . , tn and 1 ≤ i < k. In other words, the variables at a given level
of a tree are the same.

The yield function maps a s-tree into the set of substitutions it is intended to
represent.

yield(ε) = {[]}

yield(x � ([(t1, T1), . . . , (tn, Tn)])) =

σ[x := ti]

∣∣∣∣∣∣∣∣∣
i ∈ {1, . . . , n},

σ ∈ yield(Ti)

σ(x) = x ∨ σ(x) = ti


Example s-trees are given in Fig. 3. The trees are represented as ordered directed

acyclic graphs with aggressive sharing. An s-tree x� ([(t1, T1), . . . , (tn, Tn)]) has the
label x on the node, ti label the edges and each edge leads to another tree Ti.
The ground symbol corresponds to the empty tree ε. E.g., the middle bottom
one represents x � ([(a, y � ([(f(c), ε), (f(d), ε)])), (c, y � ([(c, ε)]))]), which yields
{[x := a, y := f(c)], [x := a, y := f(d)], [x := c, y := c]}. The ordering of terms used
in the example is a ≺ b ≺ c ≺ d ≺ f(a) ≺ f(c) ≺ f(d).

We now define an analogous for s-trees of the operators t and u we defined
earlier for sets of substitutions. Formally, the operators are defined so that yield is

7
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Fig. 4. Example of an index for flat triggers with g in head

a homomorphism from s-trees to sets of substitutions.

ε u T = T

x � ([(t1, T1), . . . , (tn, Tn)]) u T = x � ([(t1, T1 u T ), . . . , (tn, Tn u T )])

ε t ε = ε

x � (X) t x � (Y ) = x � (merge(X, Y ))

merge((t, T ) :: X, (t′, T ′) :: Y ) =


(t, T t T ′) :: merge(X, Y ) if t = t′

(t, T ) :: merge(X, (t′, T ′) :: Y ) if t < t′

(t′, T ′) :: merge((t, T ) :: X, Y ) if t′ < t

merge(nil,X) = X

merge(X, nil) = X

The u corresponds to stacking trees one on top of another, while t does a recursive
merge. Example applications are given in Fig. 3.

The precondition of the t operator is that the operands have the same shape,
meaning the x1 . . . xk sequence from the invariant is the same for both trees; other-
wise, t is undefined. This precondition is fulfilled by the subtrigger matcher, since
it only combines trees resulting from matching of the same trigger, which means
the variables are always accessed in the same order.

To change subtrigger match to use s-trees, we need to change the fetch function,
to return p � ([(root(t), ε)]) instead of [p := root(t)], ε instead of {[]} and x � (nil)
for some variable x instead of ∅. After this is done we only call yield at the very
end, to transform an s-tree into a set of substitutions.

5 Flat Matcher

During performance testing, we found that most triggers shared the head symbol
and matching them was taking a considerable amount of time. Moreover, the trig-
gers had a very simple form: f(x, c) 11 . This form is a specific example of something
we call flat triggers. A flat trigger is a trigger in which each variable occurs at most
once and at a depth of one.

Flat triggers with a given head can be matched all at once by constructing a tree
that indexes all the triggers with the given function symbol in the head. Such a tree
can be viewed as a special kind of a discrimination tree [16], where we consider each

11The actual function symbol was a subtyping predicate in ESC/Java2’s [11] Simplify-based object logic.
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fun topmatch(p′)
if p is flat then

let f(p1, ..., pn) = p

If := index for all triggers with head f

foreach p in If do Sp := ∅
foreach f(t1, . . . , tn) in A do

foreach p 7→ T in match′(f(t1, . . . , tn), [t1, . . . , tn], If ) do

Sp := Sp t T

return Sp′

else
S := match(p′)
return

⊔
t∈A S(t)

Fig. 5. Flat matcher

child of the pattern as a constant term, instead of traversing it pre-order. Unlike in
discrimination trees used for matching our index has non-ground terms and queries
are ground.

We assume, without loss of generality, each function symbol to have only one
arity. A node in the index tree is either a set of triggers {p1, . . . , pn}, or a set of pairs
{(t1, I1), . . . , (tn, In)}, where each of the ti is a ground term or a special variable ∗,
and Ii are index trees.

We call (t1, . . . , tn, p) a path in I if and only if: (1) n = 0 and p ∈ I; or (2)
(t1, I ′) ∈ I and (t2, . . . , tn, p) is a path in I ′.

Let star(x) = ∗ for a variable x and star(t) = t, for any non-variable term t.
We say that I indexes a set of triggers Q if for any f(p1, . . . , pn) ∈ Q there exists
a path (star(p1), . . . , star(pn), f(p1, . . . , pn)) in I, and for every path there exists a
corresponding trigger.

Given an index I, we find all the triggers that match the term f(t1, . . . , tn) by
calling match′(f(t1, . . . , tn), [t1, . . . , tn], {I}), where match′ is defined as follows:

match′(t, [t1, . . . , tn], A) =

match′(t, [t2, . . . , tn], {I ′ | I ∈ A, (p, I ′) ∈ I, p ∼= t1 ∨ p = ∗})

match′(f(t1, . . . , tn), nil, A) =

{f(p1, . . . , pn) 7→ ui=1...n, pi∈V [pi := root(ti)] | I ∈ A, f(p1, . . . , pn) ∈ I}

The algorithm works by maintaining the set of trigger indices A containing
triggers that still possibly match t. At the bottom of the tree we extract the
children of t corresponding to variables in the trigger. We only consider position at
which the trigger has variables, not ground terms (the condition pi ∈ V).

A flat-aware matcher is implemented by replacing the topmatch function from
Fig. 2 with the one from Fig. 5. The point of using it, though, is to cache If and
Sp across calls to subtrigger match.

9
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6 Implementation and Experiments

We have implemented all three algorithms inside the Fx7 SMT solver 12 . Fx7 is
implemented in the Nemerle [13] language and runs on the .NET platform. In each
case the implementation is highly optimized and only unsatisfactory results with
the simplify match algorithm led to designing and implementing the second and the
third algorithm.

The implementation makes heavy use of memoization. Both terms and s-trees
use aggressive (maximal) sharing. The implementations of u and t exploit this
sharing, by memoizing results to avoid processing the same (shared) subtree more
than once.

An important point to consider in the design of matching algorithms is incre-
mentality. The prover will typically match, assert some facts, and then match
again. The prover is then interested only in receiving the new results. The Simplify
technical report [7] cites two optimizations to deal with incrementality. We have
implemented one of them, the mod-time optimization, in all three algorithms. The
effects are mixed, mainly because our usage patterns of the matching algorithm are
different than those of Simplify: we generally change the E-graph more between
matchings due to our proof search strategy.

To achieve incrementality we memoize s-trees returned on a given proof path
and then use the subtraction operation on s-trees to remove substitutions that had
been returned previously. The subtraction on s-trees corresponds to set subtraction
and its implementation is very similar to the one of t.

Another fine point is that the loop over all active terms in the implementations
of all three algorithms skips some terms: if we have inspected f(t1, . . . , tn) then we
skip f(t′1, . . . , t

′
n) given that ti ∼= t′i for i = 1 . . . n. Following work on fast, proof-

producing congruence closure [14], we encode all the terms using only constants
and a single binary function symbol ·(. . .). E.g., f(t1, . . . , tn) is represented by
·(f, ·(t1, . . . · (tn−1, tn))). Therefore the loop over active terms is skipped when
root(·(t1, . . . · (tn−1, tn))) was already visited.

Yet another issue is that we map all the variables to one special symbol during
the matching, do not store the variable names in s-trees, and only introduce the
names when iterating the trees to get the final results (inside the yield function).
This allows for more sharing of subtriggers between different triggers and is fairly
common practice in term indexing.

The tests were performed on a 1 GHz Pentium III box with 512 MiB of RAM
running Linux and Nemerle r7446 on top of Mono 1.2.3. The memory used was
always under 200 MiB. We ran the prover on a randomly selected set of verification
queries generated by the ESC/Java [10] and Boogie [2] tools. The benchmarks are
now available as part of SMT-LIB [17].

The subtrigger matcher helps speed up matching by around 20% in the Boo-
gie benchmarks and around 50% in the ESC/Java benchmarks. The flat matcher
is around 2 times faster than Simplify’s matcher in the Boogie benchmarks and
around 10 times in the ESC/Java benchmarks. The detailed results are given in the

12Available online at http://nemerle.org/fx7/.
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Appendix A.
Now we give some intuitions behind the results. For example, consider the

trigger f(g1(x1), . . . , gn(xn)). If each of gi(xi) returns two matches, except for the
last one which does not match anything, the subtrigger matcher exits after O(n)
steps, while the Simplify matcher performs O(2n) steps. Even when gn(xn) actually
matches something (which is more common), the subtrigger algorithm still performs
O(n) steps to construct the s-tree and only performs O(2n) steps walking that tree.
These steps are much cheaper (as the tree is rather small and fits in the CPU
cache) than matching the gis several times, which Simplify’s algorithm does. The
main point of the subtrigger matcher is therefore not to repeat work for a given
(sub)trigger more than once.

The benefits of the flat matcher seem to be mostly CPU cache-related. For
example, a typical problem might have one hundred triggers with head f , and one
thousand ground terms with the head f . The flat matcher processes a data struc-
ture (of size one hundred) one thousand times, while the subtrigger matcher (and
also Simplify’s matcher) processes a different data structure (of size one thousand)
one hundred times. Consequently, given that these data structures occupy a con-
siderable amount of memory, frequently the smaller data structures in the former
case fit the cache, while the larger ones in the latter case do not.

7 Conclusions and Related Work

We have presented two novel algorithms for E-matching. They are shown to out-
perform the well-known Simplify E-matching algorithm.

The E-matching problem was first described, along with a solution, in the Sim-
plify technical report [7]. We know several SMT solvers, like Zap [1], CVC3 [4],
Verifun [9], Yices [8] and Ergo [5] include matching algorithms, though there seem
to be no publications describing their algorithms. Specifically, Zap uses a different
algorithm that also relies on the fact of triggers being linear and uses a different
kind of s-trees. Zap, however, does not do anything special about flat triggers.

In a recent paper [6] on Z3 (a rewrite of the Zap prover), a way of compiling
patterns into a code tree that is later executed against ground terms is defined.
Such a tree is beneficial if there are many triggers that share the top part of triggers.
We, on the other hand, exploit sharing in the bottom parts of triggers, and the flat
matcher handles the case of simple triggers that share only the head symbol. The
Z3 authors also propose an index on the ground terms that is used to speed up
matching in an incremental usage pattern. Such an index could perhaps be used
also with our approach. Of course, the usefulness of all these techniques largely
depends on benchmarks and the particular search strategy employed in an SMT
solver.

During the 2007 SMT competition [3] there were four solvers participating in
the Arithmetic, Uninterpreted Functions, Linear Integer Arithmetic and Arrays
(AUFLIA) division. The AUFLIA division includes software verification problems
and is the only one involving heavy use of quantifier reasoning. Z3 was first and Fx7
was second, with the same number of solved benchmarks but much worse run time.
Both solvers used improved matching algorithms, while other participants (CVC3
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and Yices) did not, which is some indication of importance of E-matching in this
kind of benchmarks.

Some of the problems in the field of term indexing [16] in saturation-based
theorem provers are also related. As mentioned earlier, our work uses ideas similar
to substitution trees and discrimination trees. It seems to be the case, however,
that the usage patterns in the saturation provers are different than those in SMT
solvers. Matching SMT solvers must deal with several orders of magnitude fewer
non-ground terms, a similar number of ground terms, but the time constraints are
often much tighter. This different set of constraints and goals consequently leads
to the construction of different algorithms and data structures.
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A Detailed Experimental Results

The first column lists the benchmark name, the second, third and fourth columns
are the average times spent matching a single trigger during proof search for a given
benchmark. The times are given in microseconds. The second column refer to the
subtrigger matcher (Fig. 4), the third one for the subtrigger matcher combined with
the flat matcher (Fig. 5) and the last column refers to the Simplify matcher (Fig. 3).

Benchmark name Subtrig.
Subtrig.
+ Flat

Simpl.

AssignToNonInvariantField.ClientClass..ctor 248 180 520
Assumptions.Sub..ctor 214 166 444
Branching.T.M.T.notnull.System.Int32 237 217 359
Chunker0.Chunker..ctor.System.String.System.Int32 133 102 250
DefaultLoopInv0.A.M-modifiesOnLoop-noinfer 173 146 293
Immutable.test3.C..ctor 232 177 549
Interval.Interval.Shift.System.Int32 261 216 564
ModifyOther.Test..ctor 246 179 438
PeerFields.Child..ctor.System.Int32 285 209 602
PeerFields.Parent.M 269 234 494
PeerFields.Parent.P 201 174 369
PeerFields.PeerFields.Assign1.PeerFields 176 140 258
PeerFields.PeerFields.M.System.Int32 284 258 470
PeerModifiesClauses.Homeboy.T-level.2 224 204 313
PureReceiverMightBeCommitted.C..ctor 199 156 351
PureReceiverMightBeCommitted.C.N 189 174 363
QuantifierVisibilityInvariant.A..ctor 245 251 524
QuantifierVisibilityInvariant.B..ctor.int 275 242 479
QuantifierVisibilityInvariant.C..ctor.int 280 233 482
Strengthen.MainClass.Main.HARD 190 163 458
Strings.test3.MyStrings.StringCoolness2.bool 184 153 418
Strings.test3.MyStrings.StringCoolness3 162 129 369
Types.T..ctor.D.notnull-orderStrength.1 142 83 428
ValidAndPrevalid.Interval.Foo4 251 194 545
Average 221 183 431
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Benchmark name Subtrig.
Subtrig.
+ Flat

Simpl.

javafe.CopyLoaded.019 322 262 826
javafe.ast.AmbiguousMethodInvocation.007 112 70 709
javafe.ast.AmbiguousVariableAccess.007 114 77 775
javafe.ast.ArrayRefExpr.007 106 67 726
javafe.ast.CastExpr.007 113 77 744
javafe.ast.ClassLiteral.007 113 70 764
javafe.ast.CondExpr.007 111 77 739
javafe.ast.FieldAccess.009 118 70 725
javafe.ast.InstanceOfExpr.007 112 72 726
javafe.ast.MethodInvocation.009 122 71 800
javafe.ast.NewArrayExpr.009 112 73 750
javafe.ast.NewInstanceExpr.003 540 272 3959
javafe.ast.NewInstanceExpr.008 108 72 709
javafe.ast.ParenExpr.007 113 76 758
javafe.ast.ThisExpr.007 115 75 723
javafe.ast.VariableAccess.008 109 74 714
javafe.parser.Lex.006 218 189 1056
javafe.parser.Lex.018 256 190 874
javafe.parser.Parse.005 275 202 1864
javafe.parser.Parse.006 354 296 2107
javafe.reader.ASTClassFileParser.005 730 373 5498
javafe.reader.ASTClassFileParser.022 690 415 4544
javafe.tc.Env.007 742 517 5980
javafe.tc.EnvForLocals.001 268 190 869
Average 249 164 1581
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